MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz
Language: English | Size: 6.20 GB | Duration: 16h 43m
Learn Deep Learning & Computer Vision with Python, Tensorflow 2.0, OpenCV, FastAI. Object Detection & GAN and much more!
What you’ll learn
Using Latest Tools & Techniques in Deep Learning & Computer Vision
Learning how to used the latest Tensorflow 2.0
How to apply Transfer Learning, Ensemble Learning, using GPUs & TPUs
How to work & win Kaggle Competitions
Learning to use FastAI
How to use Generative Adversarial Networks
How to use Weights & Biases for recording Experiments
Learning to use Detectron2 for Object Detection
Making Machine Learning Web Application from Scratch
Learn how to use OpenCV for Computer Vision
How to make Real World Applications & Deploy into Cloud
Learning Techniques like Object Detection, Classification & Generation
Learning how to use Heroku for deploying ML models
Working on Kaggle Competitions & Kaggle Kernels
Exploring & Visualizing Datasets using popular libraries like MatDescriptionlib & Descriptionly.
Learinng how to use libraries like Pandas, Sklearn, Numpy
Creating Advance Data Pipelines using Tensorflow for training Deep Learning Models
Setting up Environment & Project for Deep Learning & Computer Vision
Requirements
Basic Python programming knowledge
A Computer with Internet Connection
All tools used in this course are free to use
Description
This Brand New and Modern Deep Learning & Computer Vision Course will teach you everything you will need to know to learn the fundamentals of computer vision.
Deep Learning & Computer Vision is currently one of the most increasing fields of Artificial Intelligence and Companies like Google, Apple,
Facebook, Amazon are highly investing in this field. Deep Learning & Computer Vision jobs are increasing day by day & provide some of the highest paying jobs all over the world.
If We Want Machines to Think, We Need to Teach Them to See.-Fei Fei Li, Director of Stanford AI Lab and Stanford Vision Lab
Computer Vision allows us to see the world & process digital images & videos to extract useful information to do a certain task from classification, object detection, and much more. Python is one of the most popular used programming language in Deep Learning and Computer Vision.
All the tools, techniques & technologies used in this course –
Learning Computer Vision & Deep Learning Fundamentals
Setting up Anaconda, Installing Libraries & Jupyter Notebook
Learning fundamentals of OpenCV & Numpy – Reading images, Colorspaces, Drawing & Callbacks
Advanced OpenCV – Image Preprocessing, Geometrical transformations, Perspective transformations & affine transformations, image blending & pyramids, image gradients & thresholding, Canny Edge Detector and contours
Working with videos in OpenCV – Using webcam, Haar Cascades & Object Detection, Lane Detection
Deep Learning & How Neural Network Works? – Artificial neural networks, Convolution Neural Networks & Transfer Learning
Image Classification – Plant leaf Classification
Working on very recent Kaggle Competitions
Using Google Colab & Kaggle Kernels
Using the latest Tensorflow 2.0 & Keras
Using Keras Data Generators & Data Argumentation
Using Transfer Learning & Ensemble learning
Using State of The Art Deep Learning Models
Using GPU & TPU for Model Training
Hyperparameter Tuning
Using Weights & Biases for recording Deep Learning experimentations
Saving & Loading Models
Creating a Weights & Biases Report & Showcasing the Project!
Object Detection – Wheat heads Detection
Working on Kaggle Competitions, again!
Using Facebook’s Detectron2 for Object Detection
Creating COCO Dataset from scratch
Training Faster RCNN Model and Custom Weights & Biases callback
Using Retinanet
Saving & Loading Detectron2 models
Generative Adversarial Networks – Creating Fake Leaf Images
Learning How Generative Adversarial Networks works
Using FastAI
Creating & Training Generative Adversarial Networks
Making Fake Images using GAN
Making ML Web Application
Getting started with Streamlit
Creating an ML Web Application from scratch using Streamlit
making a React Web Application
Deploying ML Applications
Learning how to use Cloud Services to Deploy Models & Applications
Using Heroku
Learning how to Open Source Projects on GitHub
How to showcase your projects to impress boss & employees & Get Hired!
A lot of bonus lectures!
This is what included in the package
All lecture codes are available for downloadable for free
110+ HD video lectures ( over 50 more to come very soon! )
Free support in course Q/A
All videos with English captions available
This course is for you if..
… you want to learn the Latest Tools & Techniques used in Deep Learning & Computer Vision
… you want to get more experience to Win Kaggle Competitions
… you want to get started with Computer Vision to become a Computer Vision Engineer
.. you are interested in learning Image Classification, Object Detection, Generative Adversarial Networks, Making & Deploying Machine Learning Applications
Who this course is for
You want to become a Computer Vision Engineer & Get Hired
Anyone who want to learn latest tools & techniques used in Computer Vision
You are already a Programmer and what to extend your skills by learning Computer Vision
Who want to learn new Tools & Techniques used in Computer Vision
You want to get more experience for winning Kaggle Competitions
Homepage
https://www.udemy.com/course/dlcourse/
DOWNLOAD FROM UPLOADGIG.COM
DOWNLOAD FROM UPLOADGIG.COM
DOWNLOAD FROM UPLOADGIG.COM
DOWNLOAD FROM UPLOADGIG.COM
DOWNLOAD FROM UPLOADGIG.COM
DOWNLOAD FROM UPLOADGIG.COM
DOWNLOAD FROM UPLOADGIG.COM
DOWNLOAD FROM RAPIDGATOR.NET
DOWNLOAD FROM RAPIDGATOR.NET
DOWNLOAD FROM RAPIDGATOR.NET
DOWNLOAD FROM RAPIDGATOR.NET
DOWNLOAD FROM RAPIDGATOR.NET
DOWNLOAD FROM RAPIDGATOR.NET
DOWNLOAD FROM RAPIDGATOR.NET
DOWNLOAD FROM NITROFLARE.COM
DOWNLOAD FROM NITROFLARE.COM
DOWNLOAD FROM NITROFLARE.COM
DOWNLOAD FROM NITROFLARE.COM
DOWNLOAD FROM NITROFLARE.COM
DOWNLOAD FROM NITROFLARE.COM
DOWNLOAD FROM NITROFLARE.COM