Machine Learning Design Patterns Solutions to Common Challenges in Data Preparation, Model Building, and MLOps



Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and MLOps by Valliappa Lakshmanan
English | November 10, 2020 | ISBN: 1098115783 | 408 pages | MOBI | 12 Mb
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.


In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.
You’ll learn how to:Identify and mitigate common challenges when training, evaluating, and deploying ML modelsRepresent data for different ML model types, including embeddings, feature crosses, and moreChoose the right model type for specific problemsBuild a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuningDeploy scalable ML systems that you can retrain and update to reflect new dataInterpret model predictions for stakeholders and ensure models are treating users fairly

Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me

Download From UploadCloud
DOWNLOAD FROM UPLOADCLOUD
Download From NovaFile
DOWNLOAD FROM NOVAFILE

DOWNLOAD FROM RAPIDGATOR.NET

DOWNLOAD FROM NITROFLARE.COM

DOWNLOAD FROM UPLOADGIG.COM

Links are Interchangeable – No Password – Single Extraction