Learning Ray (First Early Release)



English | 2022 | ISBN: 9781098117214 | 80 pages | PDF,EPUB | 2.31 MB
Get started with Ray, the open source distributed computing framework that greatly simplifies the process of scaling compute-intensive Python workloads. With this practical book, Python programmers, data engineers, and data scientists will learn how to leverage Ray locally and spin up compute clusters. You’ll be able to use Ray to structure and run machine learning programs at scale.


Authors Max Pumperla, Edward Oakes, and Richard Liaw show you how to build reinforcement learning applications that serve trained models with Ray. You’ll understand how Ray fits into the current landscape of data science tools and discover how this programming language continues to integrate ever more tightly with these tools. Distributed computation is hard, but with Ray you’ll find it easy to get started.
Learn how to build your first distributed application with Ray Core
Conduct hyperparameter optimization with Ray Tune
Use the Ray RLib library for reinforcement learning
Manage distributed training with the RaySGD library
Use Ray to perform data processing
Learn how work with Ray Clusters and serve models with Ray Serve
Build an end-to-end machine learning application with Ray

Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me

DOWNLOAD FROM HOT4SHARE.COM

DOWNLOAD FROM RAPIDGATOR.NET

DOWNLOAD FROM NITROFLARE.COM

DOWNLOAD FROM UPLOADGIG.COM