Hands-On Mathematics for Deep Learning



Hands-On Mathematics for Deep Learning: Build a solid mathematical foundation for training efficient deep neural networks
by Jay Dawani

English | 2020 | ISBN: 1838647295 | 364 Pages | PDF EPUB (True) | 90 MB


You’ll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application.

Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me

DOWNLOAD FROM HOT4SHARE.COM

DOWNLOAD FROM UPLOADGIG.COM

DOWNLOAD FROM RAPIDGATOR.NET

DOWNLOAD FROM NITROFLARE.COM

Links are Interchangeable – No Password – Single Extraction