Deep Learning in Multi-step Prediction of Chaotic Dynamics From Deterministic Models to Real-World Systems



Deep Learning in Multi-step Prediction of Chaotic Dynamics: From Deterministic Models to Real-World Systems by Matteo Sangiorgio, Fabio Dercole, Giorgio Guariso
English | EPUB | 2022 | 111 Pages | ISBN : 3030944816 | 14.6 MB
The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation.


The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation.

Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me

Download From UploadCloud
DOWNLOAD FROM UPLOADCLOUD
Download From NovaFile
DOWNLOAD FROM NOVAFILE

DOWNLOAD FROM RAPIDGATOR.NET

DOWNLOAD FROM NITROFLARE.COM

DOWNLOAD FROM UPLOADGIG.COM

Links are Interchangeable – No Password – Single Extraction