Free Download An Introduction to Mathematical Cryptography by J.H. Silverman , Jill Pipher , Jeffrey Hoffstein
English | PDF (True) | 2008 | 533 Pages | ISBN : 1441926747 | 5.1 MB
This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics. It includes exercises and examples at the end of each section.
ThecreationofpublickeycryptographybyDi?eandHellmanin1976andthe subsequent invention of the RSA public key cryptosystem by Rivest, Shamir, and Adleman in 1978 are watershed events in the long history of secret c- munications. It is hard to overestimate the importance of public key cr- tosystems and their associated digital signature schemes in the modern world of computers and the Internet. This book provides an introduction to the theory of public key cryptography and to the mathematical ideas underlying that theory. Public key cryptography draws on many areas of mathematics, including number theory, abstract algebra, probability, and information theory. Each of these topics is introduced and developed in su?cient detail so that this book provides a self-contained course for the beginning student. The only prerequisite is a ?rst course in linear algebra. On the other hand, students with stronger mathematical backgrounds can move directly to cryptographic applications and still have time for advanced topics such as elliptic curve pairings and lattice-reduction algorithms. Amongthemanyfacetsofmoderncryptography,thisbookchoosestoc- centrate primarily on public key cryptosystems and digital signature schemes. This allows for an in-depth development of the necessary mathematics – quired for both the construction of these schemes and an analysis of their security. The reader who masters the material in this book will not only be well prepared for further study in cryptography, but will have acquired a real understanding of the underlying mathematical principles on which modern cryptography is based.
[/b]